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ABSTRACT: The Mahaweli development programme contributes to 13% of the national 

hydroelectric power production and also the major water supply for Dry Zone of Sri Lanka. 

When considering Mahaweli cascade, the Kotmale reservoir affords a major contribution. 

The water level of the reservoir directly depends on rainfall pattern of the catchment area of 

the reservoir. Early prediction of rainfall pattern helps for efficient water management by 

predicting the water level of the reservoir. The time series analysis is a main statistical tool 

for predicting metrological phenomena. Therefore, in this study, the rainfall pattern of 

Kotmale station was modeled and forecasted using time series analysis with R software. The 

monthly rainfall data from 2003 to 2017 in the Kotmale station was considered. The study 

revealed that, SARIMA (0, 1, 1) (2, 1, 2)12 as the best fitted model for forecasting the rainfall 

pattern at the Kotmale station. Using the best fitted model, the rainfall pattern in the 

Kotmale station was forecasted. 
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INTRODUCTION 
 
The Mahaweli river is the longest river which consists of four cascades Kothmale, 
Randenigala, Rantembe and Victoria. The main objectives of the Mahaweli development 
programme are to provide water to dry zone of the country and generating hydroelectric 
power (Lareef, 2003). Water supply for a major part of agriculture fields in Sri Lanka 
depends on the Mahaweli system. Thirteen percent of the electricity requirement is fulfilled 
by hydropower in Sri Lanka. One third of hydropower depends on the Mahaweli system. The 
Kothmale reservoir has a major contribution for the Mahaweli development programme. 
Climatic changes happened over many years in the recent past. The rainfall pattern will vary 
in the future. The water levels of reservoirs depend on rainfall of the reservoir’s catchment 
areas. Changes in rainfall pattern directly affect the agriculture production and hydroelectric 
power generation. Prediction of the rainfall pattern leads to prediction of the water levels of 
the reservoir. The predicted water levels of reservoir can be used for the efficient water 
management of agriculture and hydropower. 
 
Time series analysis is the main tool for analyzing and predicting metrological phenomena 
such as rainfall, temperature and humidity (Wei, 2005). In this research, the rainfall pattern 
of the Kothmale reservoir’s catchment was analyzed. Nine stations over the Kotmale 
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catchment (544 km2) collect daily rainfall data. The data were analyzed for finding the best 
time series model for rainfall pattern in the Kothmale catchment and the model was used for 
forecasting the rainfall for future months. 
 
 

METHODOLOGY 
 
Monthly rainfall data of the Kothmale catchment from 2003 to 2017 was used for analysis. R 
software was used for analysis and graphics (Cowpertwait & Metcalfe, 2009; Shumway & 
Stoffer, 2010). The data analysis was done in three steps (Bisgaard & Kulahci, 2011). 
 
1) Identify whether the rainfall series is stationary or not. If it is not stationary, transform into 

a stationary series if possible. 
2) Identify the best fitting model and evaluate the goodness of fit of the model. 
3) Forecast the future rainfall using the best fitting model.   
 
 

RESULTS AND DISSCUSION 
 
The time series plot of monthly average rainfall in millimeters of the Kothmale catchment 
from 2003 to 2017 is given in Figure 1. 
 

 
 
Figure 1. The time series plot of the average monthly rainfall in mm of the Kothmale 

catchment from 2003 to 2017 
 
The plots of the autocorrelation function (ACF) and the partial autocorrelation function 
(PACF) are given in Figure 2. 
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Figure 2. The plot of the autocorrelation function (ACF) and the partial 

autocorrelation function (PACF) of the monthly rainfall data of the 
Kothmale catchment from 2003 to 2017 

 
The original rainfall series was decomposed to trend, seasonal and random components using 
the additive model. In the decomposed rainfall series, there is a seasonal pattern in monthly 
rainfall. The series was adjusted for the seasonal variation. The stationary condition is 
necessarily required to fit most of the time series models. The series was adjusted for 
seasonality. However, the seasonally adjusted series was not stationary. Using a proper 
degree of differencing a non-stationary time series may be reduced to a stationary time series 
(Montgomery et al., 2008). By a unit root test the stationary condition can be checked 
(Dickey et al., 2008). Therefore, difference series of adjacent series was obtained. Then the 
plots of the autocorrelation function (ACF) and the partial autocorrelation function (PACF) 
were used to identify a suitable autoregressive integrated moving average (ARIMA) model. 
The plot of the seasonally adjusted differencing rainfall series is given in Figure 3. 
 

 
 
Figure 3. The plot of the seasonally adjusted differencing rainfall series 
 
The plot of the autocorrelation function (ACF) and the partial autocorrelation function 
(PACF) for the seasonally adjusted differencing rainfall series is given in Figure 4. 
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Figure. 4. The plot of the autocorrelation function (ACF) and the partial 

autocorrelation function (PACF) for the seasonally adjusted differencing 
rainfall series 

 
According to the correlogram, the autocorrelation (ACF) at the lag 1 exceeds the significance 
bounds and also it was negative. However, the other autocorrelations between the lags 1 to 
20 do not exceed the significance bounds. The partial correlogram shows that the partial 
autocorrelations (PACF) at the lag 1 and 10 exceed the significance bounds and PACF is 
slowly decreasing in magnitude with increasing lag. According to ACF and PACF plots 
ARIMA (0, 1, 1) was identified as a candidate best fitting model. Further, the data was fitted 
to several ARIMA models (Table 1). ARIMA (0, 1, 1) had the minimum AIC (Akaike 
Information Criterion) value.  
 
Table 1. Autoregressive integrated moving average (ARIMA) models and their 

corresponding AIC (Akaike Information Criterion) values 
 
ARIMA AIC 
(1, 0, 0) 895.34 
(0, 0, 1) 895.55 
(1, 0, 1) 895.56 
(1, 1, 0) 933.67 
(0, 1, 1) 895.10 
(1, 1, 1) 895.88 
 
Several seasonal autoregressive integrated moving average (SARIMA) models were 
introduced for ARIMA (0,1,1) Model. According to the AIC values of SARIMA (0, 1, 1) (2, 
1, 2)12 was identified as the best fitting model (Table 2). 
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Table 2. Seasonal autoregressive integrated moving average (SARIMA) models and 
their corresponding AIC values 

 
SARIMA AIC 

(0,1,1)(1, 0, 0)12 954.22 
(0,1,1) (0, 0, 1)12 955.20 
(0,1,1)(1, 0, 1)12 930.11 
(0,1,1)(1, 1, 0)12 927.12 
(0,1,1)(0, 1, 1)12 876.67 
(0,1,1)(1, 1, 1)12 874.66 
(0,1,1)(2, 0, 0)12 951.87 
(0,1,1)(0, 0, 2)12 954.76 
(0,1,1)(2, 0, 2)12 923.34 
(0,1,1)(2, 2, 0)12 956.62 
(0,1,1)(0, 2, 2)12 885.80 
(0,1,1)(2, 2, 2)12 885.98 
(0,1,1)(1, 2, 2)12 886.59 
(0,1,1)(2, 2, 1)12 905.97 
(0,1,1)(1, 2, 1)12 916.53 
(0,1,1)(1, 1, 2)12 868.12 
(0,1,1)(2, 1, 1)12 872.48 
(0,1,1)(2, 1, 2)12 867.71 
(0,1,1)(0, 1, 2)12 872.47 
(0,1,1)(1, 0, 2)12 926.27 
(0,1,1)(2, 0, 1)12 928.36 
(0,1,1)(2, 1, 0)12 909.46 
(0,1,1)(0, 2, 1)12 948.08 
(0,1,1)(1, 2, 0)12 987.92 

 
The parameter estimates, their standard errors, 95% confidence interval for the parameters, 
estimated residual variance, log likelihood and AIC for the best fitting model SARIMA (0, 1, 
1) (2, 1, 2)12 are given in Table 3. 
 
Table 3. The parameter estimates, their standard errors, 95% confidence interval for 

the parameters, estimated residual variance, log likelihood and AIC for the 
best fitting model SARIMA (0, 1, 1) (2, 1, 2)12 

 
 ma1 sar1 sar2 sma1 sma2 
Coefficients -0.9323 0.4747 -0.1826 -1.8401 0.9993 
SE  0.0435 0.1008  0.1107  0.6421 0.6958 
2.5 %     -1.0174 0.2771 -0.3996 -3.0987 -0.3644 
97.5 % -0.8471 0.6724  0.0344 -0.5816  2.3630 

2̂  = 11.01:  Log Likelihood = -427.86:  AIC = 867.71 

 
The plot of autocorrelation function for the estimated residuals of the best fitting model 
SARIMA (0, 1, 1) (2, 1, 2)12 is given in Figure 5. 
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Figure 5. The plot of autocorrelation function for the residuals of the best fitting model 
 
Box-Ljung test (Box et al., 2008) was performed on residuals from SARIMA models (0, 1, 
1) (2, 1, 2)12. The Ljung-Box test statistic was 17.4437 (df = 20) and the P-value was 0.624. 
This indicates that there was no evidence of autocorrelations of residuals of the SARIMA 
model (0, 1, 1) (2, 1, 2)12. Therefore, the SARIMA model (0, 1, 1) (2, 1, 2)12 was identified 
as the best fitting model. Using the SARIMA model (0, 1, 1) (2, 1, 2)12 rainfall pattern for 
2017 July to 2017 December was forecasted (Table 4). 
 
Table 4. Forecasted rainfall for 2017 July to 2017 December with the SARIMA model 

(0, 1, 1) (2, 1, 2)12 
 

 
 

CONCLUSIONS 
 
SARIMA (0, 1, 1) (2, 1, 2)12 was identified as the best fitting time series model for 
forecasting the rainfall pattern in Kothmale catchment area. According to that model, the 
rainfall pattern from 2017 July to 2017 December was forecasted. The water level of 
Kothmale reservoir can be predicted using the predicted rainfall. The predicted water level of 
the reservoir can be used for managing water efficiently for future agriculture production and 
hydropower generation. 
 
 

Month Predicted Rainfall (mm) Standard Error (SE) 

July 8.53 3.56 
August 6.38 3.57 
September 7.85 3.58 
October 9.56 3.56 
November 7.88 3.57 
December 6.22 3.58 



Modeling and Forecasting Rainfall in Catchment Area  

347 

REFERENCES 
 
Bisgaard, S. and Kulahci, M. (2011). Time Series Analysis and Forecasting by Example. 
John Wiley & Sons, Hoboken, New Jersey, United States. 
 
Box, G.E., Jenkins, G.M., Reinsel, G.C. and Ljung, G.M. (2015). Time Series Analysis: 
Forecasting and Control. John Wiley & Sons, Hoboken, New Jersey, United States. 
 
Cowpertwait, P.S. and Metcalfe, A.V. (2009). Time Series Data. In Introductory Time Series 
with R. Springer, New York, United States. 
 
Dickey, D., Hasza, D. and Fuller, W. (1984). Testing for unit roots in seasonal time series. J. 
Am. Stat. Assoc. 79, 355-367. 
 
Lareef, Z. (2003). El Nino-southern oscillation influences on the Mahaweli stream flow in 
 ri  an a   Int. J. Climatol. 23, 91-102. 
 
Montgomery, D.C., Jennings, C.L. and Kulahci, M. (2015). Introduction to Time Series 
Analysis and Forecasting. John Wiley & Sons, Hoboken, New Jersey, United States. 
  
Shumway, R.H, and D. Stoffer. (2010). Time Series Analysis and its Applications: with R 
examples, Springer, New York, United States. 
 
Shumway, R.H., & Stoffer, D.S. (2011). Time Series Regression and Exploratory Data 
Analysis. In Time Series Analysis and its Applications. Springer, New York, United States. 
 
Wei, W.W.S. (2005). Time Series Analysis - univariate and Multivariate Methods, Pearson, 
London, United Kingdom. 
 
 


