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ABSTRACT. This paper extends the standard approach of combining forecast by 

proposing weights which are based on ranking the performance of forecast accuracy 

measures of models. These weights became necessary due to the problems associated with 

the Akaike weights, equal weights and forecast from the ‘best’ model selected by the 

minimum AICc value; which are pointed out in this study.  According to a selection criterion, 

five models were fitted to the simulated dataset with two different sample sizes, n=25 and 

n=200. The results revealed that the mean squared forecast error (MSFE) from the 

combined forecast of the proposed weights (weighted ranking procedure) outperformed all 

other approaches that were investigated in this study.  Furthermore, the three combined 

forecast approaches consistently outperformed the forecast from the best model selected by 

the minimum AICc. Thus, we recommend the use of the weighted ranking procedure in 

combining models. 
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INTRODUCTION 

 

In time series analysis, one major interest is to be able to forecast the future values of a series 

from a ‘best’ model. This is to say that before forecasting, one is faced with a challenge of 

choosing the ‘best’ model among a variety of candidate models. The selection procedures of 

the ‘best’ model have several difficulties. Usually, one has to go through a series of 

evaluations in order to get the “best” model. The obvious difficulty is that there is no 

objective guideline for the choice of the size of the various tests involved in the selection 

procedures. Thus, little or no information is known about the errors associated with these 

procedures (i.e., after conducting a series of evaluations). 

 

Our preliminary analysis and available literature indicated that, the model preferred by a test 

or information criterion does not necessarily perform better than other competing models in 

terms of prediction risk. In addition, one major drawback with model selection is its 

instability. Zou et al. (2004) argued that with a small or moderate number of observations, 

models close to each other are usually hard to distinguish and the model selection criteria are 

usually quite close to each other. Thus, a slight change of the data may result in the choice of 

a different model. 

 

The unstable nature of model selection criteria often may inflate variability in the estimation 

or prediction. The instability of model selection has been recognized in statistics and related 

literature (Breiman, 1996). Chatfield, 2004; Hoeting et al. 1999; have used the term ‘model 
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uncertainty’ to capture the difficulty in identifying the correct model. In addressing this 

challenge, combining forecast was introduced over the past three decades (Bates and 

Granger, 1969; Clemen, 1989) and various methods have been proposed. Thus, when there is 

a substantial uncertainty in finding the ‘best’ model, alternative method, such as a combined 

model should be considered. 

 

Most often, the following weighting schemes have been distinguished: equal weights, Akaike 

weights, optimized and constrained weights, and Bayesian weights. However, these authors 

often do not focus on deriving a weighted model but rather weighted forecasting. Thus, this 

study does two different things relating to combining models: (1) evaluate two most 

commonly used conventional weighting schemes and propose a new weighted procedure 

based on ranking competing models by their respective forecast accuracy measure 

performance, and (2) derive the weighted model based on the new proposed weights. 

 

 

METHODOLGY 

 

Weights for combining forecast 

 

In this section, we briefly discuss the Akaike weights, equal weights and the proposed 

weights, called weighted ranking (WR). 

 

Akaike weights 

 

The Akaike weights was proposed by Akaike (1974). The procedures of the Akaike weights 

are as follows: 

 

a. Ranking alternative models 

 

The AICc values, of the entire set of models is rescaled, such that the model with 

the minimum AICc has a value of 0. Thus, information criterion values can be 

rescaled as simple differences, 

 

         m i ni iA I C c A I C c∆ = −                                    (1)
 

 

where 
iA I C c
 is the individual AICc of each alternative model and 

minAICc  is 

the best model or model with the minimum AICc. The 
i∆  allows a ranking of the 

models from best to worst; the larger the i
∆ , the less plausible is model i. 

 

b. Defining the Akaike weights 

 

The simple transformation 1
ex p

2
i

 
− ∆ 

 

 results in the (discrete) likelihood of 

model i, given the data L(gi|x). These are functions in the same sense that L(θ|x,gi ) 

is the likelihood of the parameters θ, given the data (x) and the model (gi ). These 

likelihoods are very useful; for example, the evidence ratio for model i versus 

model j is  
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It is convenient to normalize these likelihoods such that they sum to 1, as 
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2
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− ∆ 
 =
 
− ∆∑  
                                     (3)

 

                                      

 

where wi is the akaike weight, R is the number of the entire set of models (Burnham 

and Anderson, 2002 ). Our interest is with the Akaike weights. 

 

This weight makes use of the Akaike information criterion. However, as pointed out earlier, 

these information criteria performances are unstable at times. In other words, they wrongly 

select models at times, and models selected by them as ‘best’ models do not mean they 

forecast well. Thus, the estimation of weights based on any of these criteria will likely 

exhibit instability at times. In other words, since these information criteria do not always 

select the ‘best’ model, any estimation from them makes the results unstable or uncertain. 

 

Equal weights 

 

Equal weights for combining forecast is a straightforward approach compared to other 

weighting approaches. Here, forecast values from the entire set of models are averaged by 

using any kind of mean (e.g., trimmed, arithmetic, etc). 

 

One basic problem with this weighting approach is that, the forecast performance of different 

models are not the same; some models outperform others. Thus, it will be conceptually 

wrong to consider the forecast performance of all models as same.  

 

Proposed weights 

 

To overcome the above problems, we propose a weight whose estimation is not based on 

information criteria and the assumption of equality in forecast performance is desirable. We, 

therefore, propose a weight based on ranking the forecast or predictive performance of all 

competing models.  

 

The basis of the weighted ranking procedure is that, each competing model has the potential 

of relatively predicting the future value of a series, since the true model is unknown. Thus, 

we allow each model in the competing set of models to forecast. We therefore rank each 

model based on their predictive performance, by ranking the model with the lowest forecast 

accuracy giving the highest rank to that model while the best model gets the lowest rank. The 

weighted ranking procedure is given below: 

 

1. Fit a set of competing models to a dataset. Here, it is appropriate that the selected 

models of the set have close distance, meaning difference in the information 

criterion of the respective models should be small. Thus, the guideline for including 

a model to the set of competing models is that, the information criterion difference 

of a model and the best model should be less than 4 (i.e.,
 

4)
i

∆ < . 



Combining Univariate Time Series Models 

 489

2. Forecast each model in the entire set of models based on the ‘out-of-sample’ or ‘in-

of-sample’ data. 

 

3. Calculate their respective forecast accuracy measure, e.g., MSFE, MAPE etc. 

 

4. Rank models in the entire set by their forecast accuracy measure. Thus, the lowest 

forecast accuracy measure model receives the highest rank. 

 

5. Sum the ranks and respectively divide the individual rank by the total of the ranks to 

get the corresponding model weights. 

 

Thus, we can express the proposed weight as: 

1

, 1, 2, ..., si
i s

i
i

w i
ψ

ψ
=

= =

∑
                                             (4)

 

where 
i

ψ is the rank for model i forecast accuracy measure, MSFE; and 
1

s

i
i

ψ
=

∑  is the sum of 

ranks of forecast accuracy measure, MSFE, in the entire set of models (s = last model in the 

entire set). 

 

Formula for combining forecast values 

 

For period h + 1, the forecast values are: 

              Model 1 : Fh+1 → Fh+1,1 × w1 

Model 2 : Fh+1 → Fh+1,2 × w2 

Model n : Fh+1 → Fh+1,n × wn 

In general, forecast value for each model is: 

Fh+1,i × wi , i = 1,2,3, …, n 

where i is the respective model. 

Thus, overall forecast value for a particular period is: 

                                                       
1 1,

1

R

h i h i
i

f w f+ +
=

= ∑                                                           (5) 

where R is the number of models in the entire set. 

 

Combining ARIMA models 

 

In the available literature, the interest of researchers, usually, is to combine forecast values 

and not combining models. Thus, in this study we present an appropriate way of combining 

models.  

 

Univariate ARMA (p,q) model 

 

A time series {xt; t = 0,± 1, ± 2, …} is ARMA (p,q) and is stationary 

 

                         1 1 1 1... ...t t p t p t t q t qx x x w w wφ φ θ θ− − − −= + + + + + +
                             (6) 

 

with  
20, 0 0p q wandφ θ σ≠ ≠ > . The parameters p and q are called the autoregressive 

and the moving average orders, respectively. 
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Weighted ARIMA model 

 
Thus, ARIMA (p,d,q) model in equation (6) can be combined with appropriate weights as: 

                   1 1 1 1... ...t t i t i t t j t jx x x w w wφ φ θ θ∗ ∗ ∗ ∗

− − − −= + + + + + +
                           (7)

 

where 1 , . . . ,,i i pφ ∗ =  and , 1,...,j j qθ ∗ = are the “weighted” parameter estimates 

of autoregressive and moving average processes, respectively. 

 

Definition of weighted parameter estimates 

 

a). For the Autoregressive model 

                                              

, h
1

1

ˆ( )
,
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R

i i i i
i
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i i i
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w I g

w I g

φ
φ ∗ =
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∑
                                                             (8)

 

where  
1, m odel ,

( ) {
0,

i i

i i

if is in the g
I g

o therw ise

φ
=  

Here, 
,h

ˆ
iφ
denotes the estimator of ˆ

iφ based on model gh . 

b). For the Moving Average Model 
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Here, 
j,hθ̂ denotes the estimator of 

jθ̂ based on model gh . 

Similarly, we can define drift or intercept as in (8) and (9). 

 

Simulation study for combining models 

 

Data were simulated from a true model using R software. Several models were then fitted to 

the data. However, since the true model is known, we ignore it from the competing models. 

Here, we consider all models as approximation of the true model. The justification is that, in 

the real world data, the true model of a data set is not known. Thus, without the true model, 

the model with the minimum information criterion is considered as the best model. 

 

Datasets are generated for samples of N = 35 (considered as small sample) and N = 210 

(considered as large sample). A ‘seed’ was set so that the same data set were produced for 

the large sample size. However, for the purpose of cross-validation, 10 data-points were 

removed from each sample sets. Thus, the sample size for model fitting were n = 25 and n = 

200. The rationale behind these two different sample sizes is that, we want to know how the 

proposed method performs with an increase in sample size. 
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RESULTS AND DISCUSSION 

 

Akaike weights 

 

Based on the guideline indicated earlier, five models were identified and fitted to both data 

set of sample sizes n=25 and n=200. The results of all necessary computations are given in 

Table 1. 

 

Table 1. Derived Akaike weight for n = 25 

 

Model AICc 
i∆ L(gi|x) wi 

1. (1,1,0)* 154.22 0 1 0.27 

2. (2,1,0) 154.42 0.20 0.9048 0.24 

3. (1,1,2) 154.96 0.74 0.6907 0.18 

4. (2,1,1) 155.12 0.90 0.6376 0.17 

5. (0,1,2) 155.55 1.33 0.5143 0.14 

R = 5   3.7474 1 
*is the ‘best’ model 

 

In Table 1, the weight of the ‘best’ model (which is model 1, (1, 1, 0)) is quite similar to 

model 2, and even its difference with models 3, 4, and 5 are considerably smaller. In other 

words, all the models in the entire set look good as approximation of the true model. Thus, in 

this case, it is not appropriate to consider only the ‘best’ model for inference by neglecting 

equally good models. This is the basis of combining forecast or models. 

 

Table 2. Derived Akaike weight when N=200 

 

Model AICc i
∆  L(gi|x) wi 

1. (2,1,1)* 582.6 0 1 0.32 

2. (1,1,1) 583.82 1.22 0.5434 0.17 

3. (3,1,1) 583.48 0.88 0.6440 0.21 

4. (2,1,2) 583.88 1.28 0.5273 0.16 

5. (3,1,0) 584.31 1.71 0.4253 0.14 

 6. (1,1,0)
# 

587.04 4.44 ---- ---- 

R = 5   3.14 1 
*is the ‘best’ model 

# Model 6, (1,1,0) was the ‘best’ model when sample size was, n = 25. However, it could not meet the 

selection requirement into the set of competing models when sample size, n = 200. Thus, model 6, 

(1,1,0), cannot be included into the set of competing models when sample size, n = 200. 

 

In Table 2, the weight of the ‘best’ model is relatively higher as compared to models 2, 4, 

and 5; but the different with model 3 is not that much.  

 

Since the difference between the ‘best’ model weight and other competing or alternative 

models is very small; instead of using only the ‘best’ model for inference, it will be 

appropriate to add the other four alternative models to construct a single weighted model 

(composite model) for proper inference. This will lead to increase in precision. 
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Equal weight 

 
There are five (5) models in the entire set, thus the equal weight will be 0.2 for each model.  

 

Proposed weight (weighted ranking procedure) 

 

Based on the selection criterion indicated earlier, five models were identified and fitted to 

both dataset of sample size n = 25 and n = 200. However, it should be noted that, several 

models were fitted to the data but for lack of space, we report models which meet the 

selection criterion.  We got the forecast values for each model for 10 horizons. The out-of-

sample forecast accuracy measure, mean square forecast error (MSFE), was computed on 

each model. These MSFE of the individual models were ranked from lowest to highest. The 

results are given in Tables 3 and 4. 

 

Table 3. Deriving the weighted ranking procedure when n = 25 

 

Model MSFE Rank Weights 

1. (1,1,0) 68.92 3 0.20 

2. (2,1,0) 71.86 2 0.13 

3. (1,1,2)* 60.09 5 0.33 

4. (2,1,1) 64.33 4 0.27 

5. (0,1,2) 72.51 1 0.07 

Total  15 1 
*’best’ model in terms of forecast performance 

 

In Table 3, the distributions of weights are very different from the Akaike weights. Here, the 

‘best’ model (i.e., (1, 1, 0)) selected by the Akaike information criterion was the third ‘best’ 

model in terms of forecasting performance. This confirms the fact that ‘best’ model does not 

always give better forecast. 

 

Table 4. Deriving the weighted ranking procedure when n = 200 

 

Model MSFE Rank Weights 

1. (2,1,1) 83.93 3 0.20 

2. (1,1,1)   84.23 1 0.07 

3. (3,1,1)* 83.66 4 0.27 

4. (2,1,2) 83.98 2 0.13 

5. (3,1,0) 82.23 5 0.33 

Total  15 1 

*’best’ model in terms of forecast performance 

 

In Table 4, the distributions of weights are also very different from the Akaike weights. 

Here, the ‘best’ model (i.e., (2,1,1)) selected by the Akaike information criterion was ranked 

as the third ‘best’ model in terms of forecasting performance by the ranking weight. Thus, 

we expect that our weighted ranking approach to out-perform the Akaike weight.  
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Overall performance of approaches 

 
The purpose of this section is to compare the performance of combining forecasts using 

Akaike weights, equal weights, and our proposed weights and with individual forecast 

obtained from the ‘best’ model selected by the AICc; with respect to different horizon. Here, 

we define horizon as the distant from one observation in time to the other. Mean square 

forecast errors (MSFE) for sample n = 25 are given in Table 5. 

 

Table 5. Mean Square Forecast Error (MSFE) for sample n = 25 

 

Horizon Wrank Wakaike Wequal MinAICc 

1 2.784 2.974 2.833 3.848 

2 9.990 10.448 10.162 12.344 

3 14.299 15.113 14.867 17.099 

4 14.596 15.622 15.437 17.248 

5 27.234 28.840 28.646 30.505 

6 
45.808 48.085 47.881 49.619 

7 73.782 76.848 76.629 78.144 

8 125.917 130.081 129.831 131.095 

9 158.889 163.696 163.439 164.237 

10 
179.755 184.965 184.707 185.044 

Total (MSFE) 65.306 67.667 67.443 68.918 
# MinAICc is the MSFE from ‘best’ model selected by minimum AICc, Wequal is the MSFE from 

equal weights, Wakaike is MSFE from Akaike weights and Wrank is the MSFE from weighted 

ranking. 

 

Mean square forecast errors (MSFE) for sample, n=200 are given in Table 6.  

 

Table 6. Mean Square Forecast Error (MSFE) for sample n = 200 

 

Horizon Wrank Wakaike Wequal MinAICc 

1 0.299 0.294 0.301 0.271 

2 0.283 0.271 0.272 0.254 

3 3.459 3.443 3.443 3.426 

4 18.612 18.665 18.652 18.650 

5 35.227 35.399 35.357 35.467 

6 
68.184 68.511 68.436 68.679 

7 108.721 109.233 109.114 109.548 

8 169.742 170.486 170.309 170.989 

9 205.154 206.062 205.841 206.717 

10 
223.542 224.566 224.314 225.332 

Total (MSFE) 83.321 83.693 83.604 83.933 

 

In Table 5 and 6, the weighted ranking procedure measured the lowest MSFE, indicating that 

our proposed weighted ranking procedure outperforms the other approaches of weights 

combined forecasts (i.e., equal weight and Akaike weight) and the individual forecast 
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obtained from the ‘best’ model selected by minimum AICc. The second performed approach 

is the equal weighting method, followed by Akaike weighting method and lastly the ‘best’ 

model selected by minimum AICc; and this is depicted in Figure 1. Such performance 

indicates the dominance of combined forecasts. 

 

Generally, in all the approaches, forecast horizon increases with MSFE, and this is evident in 

Figure 1. This confirms that time series forecast does not perform well with high horizon, 

thus, it’s always appropriate to forecast smaller or shorter horizon. It should be noted that the 

smaller the MSFE value the better the model. 

 

 
 

Fig 1. Performance of weighted approaches and best model as horizon increases 

 

MinAICc is the MSFE from ‘best’ model( Wrank) selected by minimum AICc, Wequal is 

the MSFE from equal weights, Wakaike is the MSFE from Akaike weights and Wrank is the 

MSFE from weighted ranking. 

 

Combining models using Weighted Ranking procedure 

 

Available literature often neglects the aspect of combining models. Thus, in this section, we 

show how to combine models using the weighted ranking procedure. It should be noted that, 

the approach can be applied when using any other weighting technique. We will illustrate 

this technique by using models for which when sample size, n = 200. 

 

Weighted parameter estimates 

 

The computation of the weighted parameter estimates of the models are presented in Table 7. 

It should be noted that, when n = 25, the ‘best’ model was (1,1,0); however it could not make 

it into the set of competing models when n = 200, according to the selection criterion. 
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Table 7. Weighted parameter estimates, when N = 200 

 

Model Original parameter 

(2) 

Weights 

(3) 

New paramters 

[ 2*3] 

(2,1,1) 
1

2

1

ˆ 0.1913

ˆ 0.2544

ˆ 0.7154

φ

φ

θ

=

=

=

 

0.20 

1431.0

0509.0

0383.0

*

1,1

*

1,2

*

1,1

=

=

=

θ

φ

φ

 

(1,1,1) 
1

1

ˆ 0.4729

ˆ 0.4586

φ

θ

=

=
 

0.07 
1,2

1,2

0.0331

0.0321

φ

θ

∗

∗

=

=
 

(3,1,1) 
1

2

3

1

ˆ 0.3847

ˆ 0.0470

ˆ 0.1218

ˆ 0.5083

φ

φ

φ

θ

=

=

=

=
 

0.27 

0137.0

0329.0

0127.0

1039.0

*

3,1

*

3,3

*

3,2

*

3,1

=

=

=

=

θ

θ

φ

φ

 

(2,1,2) 
1

2

1

2

ˆ 0.5391

ˆ 0.1098

ˆ 0.3571

ˆ 0.1891

φ

φ

θ

θ

=

=

=

= −

 

0.13 

0246.0

0464.0

0143.0

0701.0

*

4,2

*

4,1

*

4,2

*

4,1

−=

=

=

=

θ

θ

φ

φ

 

(3,1,0) 
1

2

3

ˆ 0.8624

ˆ 0.3465

ˆ 0.2047

φ

φ

φ

=

= −

=  

0.33 

0676.0

1144.0

2846.0

*

5,3

*

5,2

*

5,1

=

−=

=

θ

φ

φ

 

 

Applying equation (2.8) and (2.9), we achieve the following weighted parameter estimates 

for the autoregressive and moving average models, respectively. 

 

)0213.0(02458.0

)2219.0(5355.0

)08405.0(1674.0

)1590.0(0393.0

)1774.0(52994.0

*

,2

*

,1

*

,3

*

,2

*

,1

−=

−=

=

−=

=

r

r

r

r

r

θ

θ

φ

φ

φ

 

 

Note that the values in the parentheses are the respective standard errors. Thus, the combined 

or weighted model is ARIMA (3,1,2) but with different parameter estimates. It’s defined as: 
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( ) ( )2 3 2
1 0.52994 0.0393 0.1674 1 0.5355 0.02458t tB B B Z B B a− + − ∇ = − +  

 

CONCLUSION 

 

The problems or challenges associated with the Akaike weights, equal weights for combining 

forecasts and forecast from a single ‘best’ model selected by the minimum AICc value are 

pointed out in this study. Thus, an approach that can minimize or handle these challenges 

will be useful. We therefore, proposed a weight based on ranking procedure to combine 

forecast. The results revealed that the MSFE from the combined forecast of the proposed 

weight (weighted ranking procedure) outperformed all other approaches that were 

investigated in this study.  Furthermore, the three combined forecast approaches consistently 

outperformed the forecast from the ‘best’ model selected by minimum AICc. We therefore, 

recommend the use of weighted ranking procedure for combining models. 
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