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ABSTRACT. Many problems are associated with the analysis of binary data. 
A standard analysis of variance cannot be used to model binary data for many 
reasons. These problems are discussed along with the problem of 
overdispersion. Although the linear logistic model is commonly used to analyse 
binomial data, it is not appropriate in the presence of overdispersion. 

It is shown here how overdispersion can be handled using the logistic 
normal binomial distribution and defining a parameter for aggregation. The 
method is illustrated using survey data collected on pineapple wilt disease from 
four sites in Gampaha district (Kattota, Kalagedihena, Navadigaand Urapola). 

INTRODUCTION 

In an experiment in which the variable of interest is an incidence or 
occurrence, the observation made on each of the experimental units will take 
one of two possible values. For example, a seed may or may not germinate 
under certain experimental conditions; a patient in a clinical trial to compare 
alternative forms of treatment may or may not experience relief; an insect in an 
insecticidal trial may survive or die when exposed to a particular dose; a plant 
may be observed as either diseased or healthy in an epidemiological 
experiment. Such data are called binary data. The terms incidence data or 
quanta! data are used alternatively. The two possible forms for each of the 
observations are often described generically by the terms 'success' and 'failure'. 

In most circumstances, interest centres not only on the response of one 
particular experimental unit (seed, plant or insect) but on a group of units that 
have all been treated alike. For instance, a batch of seed may be exposed to 
certain set of conditions and the proportion of seeds germinated in the batch is 
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Review of analysis of binomial data 

For binomial data the response from the /* unit, / = 1,2 n is the 
proportion y, In,. The approximate distribution for the r* observationy, i; 
usually the binomial distribution (Cox and Snell, 1989; McCullagh and Neldet, 
1989) with parameters «,andp,. B(n,,p) wherept is termed success probability 
and n, is the sample size. For the binomial distribution, the means and 
variances are given by = np, and VarfyJ = np, (1-p). 

Following the regression model for continuous data, one can easily 
adopt the model given below for binomial data. 

* < y ) = P r W ? x t f ? v Pa o> 

A A A 
and apply the method of least squares to obtain estimates for, po, P, Pk 

(McCullagh and Nelder, 1989). 

There are number of drawbacks for fitting a standard regression model 
to binomial data. They are: 

1. Non-constant variance for proportions (Snedecor and Cochran, 
1989). The method of weighted least squares (Aitken et al, 
1989) using iterative schemes has been proposed as a solution to 
this problem. 

2. Normality assumption cannot be made. 

3. Since the range of P, is (-», «•) the estimated values for/7, (see 
equation 1) may not lie in the interval (0,1). Transformation 
techniques can be used to solve this problem and the most 
commonly used transformation is the logistic transformation. 

The linear logistic model may be written as : 

logit (p) = log = n, = P 0+P Ix H+P ax w+ Pt*t, (2) , 
l'Pt 
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used as the observation. The resulting data are then referred to as group binary 
data or binomial data. 



e 

Tropical Agricultural Research Vol. 8 1996 

and pi can be obtained as D = 

In order to fit a linear logistic model to a given set of data, k+l 
unknown parameters, P„, P, p\ have first to be estimated. These 
parameters are readily estimated using the method of maximum likelihood 
(McCullagh and Nelder, 1989). 

The log likelihood function for the binomial distribution can be written 
as: 

logUPKItlog^'J + y ^ -n, logO + e".)} ( 3 ) 

where r|, is the linear predictor as in the equation (2) 

The algorithm is implemented in widely available computer packages 
such as GLIM (GLIM, 1985) and SAS (SAS, 1990), for fitting models to binary 
response data. 

The maximum achievable log likelihood is attained at the point yx I nt 

which does not occur in the model space under HQ. The residual deviance (D) 
is defined as twice the difference between the maximum achievable log 
likelihood and that attained under the fitted model. The deviance function is 
written as 

D « 2 X y . , l o g i + (n. - y j j l o g ^ i ( 4 ) 

y\ n i - yi 

where, 

A A 
y-, = " i Pi • 

Since D is asymptotically distributed as A^- i where k+l (as in equation 1) is 
the number of fitted parameters under Ho, D is used as a goodness-of-fit statitic 
for testing the adequacy of the fitted model. In addition, the significance of a 
particular term is tested by comparing deviance change (between two nested 
models), which has an asymptotic X2 distribution, with the corresponding 
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Overdispersion 

When a fitted linear logistic model to n binomial proporties is 
satisfactory, the residual deviance has an approximate A 2 distribution with n-k-
1, it follows that the residual deviance for the best-fitting model should be 
approximately equal to its df. If the fitted model does not adequately describe 
the observed proportions the residual deviance is likely to be greater than n-k-1. 
If this happens even after fitting the saturated model the data is said to exhibit 
overdispersion, a phenomenon that is also known as extra binomial variation. 

Solution to overcome overdispersion 

A solution proposed in this study for the above problem is to fit a 
conditional probability model, the logistic-normal binomial model, rather than 
the linear logistic model. The logistic-normal binomial model may be 
formulated as: 

logit (pt) - T\. + yzf (5) 

where p, is the true response probability (Collett, 1991), i.e. the expected 
response probability and the variability in the response probability together, r\, 
the linear predictor, y is the coefficient of the random term z,. The z, is the 
standardized variate with zero mean and unit variance and thus y is the standard 
deviation of the random effect variable. Thus, E(logit p) = r\t and 
Var (logit pt) = Y2 • 

The software EGRET (EGRET, 1991) can be used to obtain the 'best' fitting 
logistic normal binomial model. 

Illustration 

The above analysis is illustrated using data collected from four sites 
in Gampaha district (Kattota, Kalagedihena, Navadiga and Urapola), in a 
survey conducted on the incidence of Pineapple wilt disease. 
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models), which has an asymptotic X1 distribution, with the corresponding 
change of degrees of freedom (df). 
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Table 1. Possible models for the data collected. 

Fitted 
deviance 
model 

Fixed effect component Random 
effect 
component 

df 

A u 143 458.11 

B u + «> . 142 452.05 

C u + ft 142 423.54 

D 141 417.33 

E u + Hi + Pj + fapJa 140 368.54 

F P Y 142 332.98 

G P + «i Y 141 330.71 

H U + Pj Y 141 318.32 

1 . p + Bi + Pj Y 140 315.08 

J u + di + Pj + fapjij Y 139 292.59 

K M + a i + Pi + (aP) i j Ys 136 276.98 

Where p » overall mean Oj = effect of i* cultivar, i = 1 (Murici), 2 (Kew), P j = effect of j * Year 
of stand j = 1 (two years), 2 (four years), (aP)8 = interaction effect of i* level of cultivar and f 
level of age. 

Table 1 shows possible models that can be fitted for this data, with 
corresponding df and deviance values. 

The differences between deviances are calculated for specified pairs 
where the difference between two models in the pair is only one term. The 
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The data comprised of a two factor factorial (2 x 2) structure, where 
one factor was cultivars (Murici and Kew) and the other factor age of the crop 
(two years and four years). For each combination, an array of 12 rows x 30 
plants per row were investigated. Each of these arrays were divided into 
quadrats of size 10 so that for each factorial combination there were 36 
quadrats. Orientation of the quadrats were taken along the plant rows because 
disease spread was more prominant along the rows rather than across the rows. 
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,;:deviance difference and the corresponding tests with the associated 
• probabilities are given in Table 2. 

. It is evident that the saturated model (fit K in Table 1) is the most 
appropriate model to describe the data. That is, all main effects (cultivar and 
age) and the interaction between cultivar and age is present with respect to 
desease incidence. In addition, varying random effects among different 
factorial combinations is also present. 

Parameter estimates for the best fit are given in Table 3. 

Table 2. Possible likelihood ratio tests for the models. 

Test Compare 
fits 

Likelihood 
ratio 

statistics 

df P 
value 

1. Test for cultivar effect adjusted for the 
age 

C V s D 6.207 1 0.01 

2. Test for age adjusted for the cultivar 
effect 

B V s D 34.72 1 <0.0I 

3. Test for interaction adjusted for both 
factors 

D V s F 48.79 1 <0.01 

4. Test for the random effect EVsJ 75.95 1 <0.0I 

5. Test for the cultivar effect (adjusted) in 
the presence of random effect 

HVsI 3.24 1 <0.01 

. 6. Test for age effect (adjusted) in the 
presence of random effect 

GVsJ 15.64 1 <0.01 

7. -Test for interaction (adjusted) in the 
presence of random effect 

I VsJ 22.49 1 <0.01 

8. Test of difference levels of random 
effect 

. J.Vs K 24.61 1 <0.01 

Models A, B, C, D, E, F, G, H, I and K as defined in Table 1 

The parameterization adopted in GLIM and EGRET is called 'comer 
point' parameterization in which first level of each factor is set to zero. For 
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instance second row estimate of Table 3 is the difference between cultivar Kew 
and Murici for the disease incidence. Since the disease incidence is -1.953 and 
standard error is 0.481, t = -1.953/0.481 = 4.06 of which PO.05. Therefore, 
disease incidence is higher with Murici compared to Kew. Other comparisons 
can be made similarly. 

In comparison with linear logistic model, standard errors with logistic 
normal binomial model are much larger, in this case at least by 50%. This 
increase takes into account variability in the response probability due to non 
random spatial patterns of disease incidence. Consequently the quantities 
derived from these estimates, such as fitted probabilities, will have larger 

Table 3. Estimates and standard errors of estimates of the bet fit (K) 
with corresponding linear logistic mode) parameters an their 
standard errors. 

Parameter Under logistic-normal 
binomial model 

Under liner logistic model -Parameter 

Estimate (n) S.E. Estimate (n.) S.E. 

u -0.9266 0.211 -0.7691 0.113 

Cv. (Kew) -1.953 0.953 -0.0518 0.161 

Yr.4 -0.1669 0.338 -1.339 0.204 

Cv. (Kew). Yr4 2.605 0.567 1.743 0.257 

standard errors than they would have had in the absence of overdispersion. The 
corresponding confidence intervals for these quantities will then be wider than 
they would have been if no adjustment were made for overdispersion. 

It is important to note that the deviance of the saturated model (K) is 
still much larger that the residual df. The distribution of the residual deviance 
for the logistic normal binomial model is not well known (Collett, 1991). 

Thus, the residual deviance does not necessarily have X1 distribution. 
Therefore, deviance of saturated model need not be approximately equal to its 
degrees of freedom. 
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CONCLUSION 

Epidemiological studies with aggregated spatial patterns of disease 
incidence are very common in practice (Jeger, 1989). Fitting a binomial 
distribution (or linear logistic model) does not adequately describe disease 
incidence when the incidence is aggregated. The use of binomial distribution 
in such situation gives misleading results. 

From the results of the model fitted for pineapple wilt disease it was 
found that among cultivars used in commercial cultivation, the cultivar Kew is 
more suceptible to wilt disease than cultivar Murici. In addition the disease 
incidence increases substantially with time and therefore, the control of the 
disease at early stages is crucial. The significant interaction component implies 
that the disease increase over time was more prominent in cultivar Kew when 
compared to that of cultivar Murici. 
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